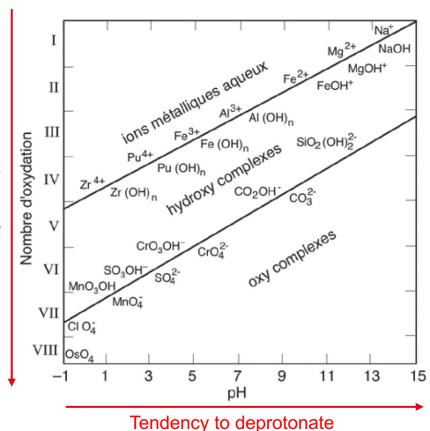

Exercise 1: Complex formation with water

Meret Aeppli

Which color refers to

- Aquo-metal ions (fully protonated)?
- Hydroxo (OH-) complexes?
- Oxy (-O) complexes (fully deprotonated)?


Exercise 1: Solution

eret Aeppli

ENV 200: Metal Speciation

For most natural waters,

- metals in valence states I and II will be present as "free ions", that is, aquo-complexes
- valence III metals will be present as aquo- and hydroxocomplexes (depending on pH)
- and those with higher charge will be present as oxo-complexes.

Exercise 2: $pH - p\beta_i$ relationships for hydrolysis

Consider a system with Cu in water.

- a. What is the pH in solution when the concentration of Cu^{2+} equals the concentration of $Cu(OH)_2$?
- b. At pH 8, is Cu²⁺ or Cu(OH)₂ the dominant species in solution?

The following constant is available:

*
$$\beta_2 = \frac{[Cu(OH)_2][H^+]^2}{[Cu^{2+}]} = 10^{-13.8}$$

Exercise 2: Solution

Meret Aeppli

- a. $13.8 2 \text{ pH} = \log[\text{Cu}^{2+}] \log[\text{Cu}(\text{OH})_2]$ Here, $[\text{Cu}^{2+}] = [\text{Cu}(\text{OH})_2]$ 13.8 = 2 pH $\underline{\text{pH}} = 6.9$
- b. $p*\beta_2 = 13.8$ m pH = 2 * 8 = 16 $m pH > p*\beta_2$: $Cu(OH)_2$ is dominant in solution

Exercise 3: Hydroxo complexes

leret Aeppl

Consider the following equations:

$$Cu^{2+} + H_2O = CuOH^+ + H^+$$
 log *K₁ = -8

$$Mg^{2+} + H_2O = MgOH^+ + H^+$$
 $log *K_1 = -11.4$

- a. Is the acidity of Cu²⁺ or Mg²⁺ higher?
- b. At pH 7, which fraction of the Cu(II) of a pure Cu-salt solution will occur as hydroxo complex?
- c. At pH 7, which fraction of the Mg(II) of a pure Mg-salt solution will occur as hydroxo complex?

- Cu²⁺ has higher acidity than Mg²⁺ (higher log *K₁ value)
- Fraction of hydrolysed species, α , is expressed as:

$$\alpha_{CuOH^+} = \frac{[CuOH^+]}{Cu_T} \quad = \frac{[CuOH^+]}{[Cu^{2^+}] + [CuOH^+]}$$

*
$$K_1 = \frac{[CuOH^+][H^+]}{[Cu^{2+}]}$$
, i.e., $[Cu^{2+}] = \frac{[H^+][CuOH^+]}{{}^*K_1}$

$$\alpha_{\text{CuOH+}} = \frac{[\text{CuOH+}]}{[\text{H+}][\text{CuOH+}]} + [\text{CuOH+}] = \frac{1}{[\text{H+}]} + 1 = 0.091$$

Analogous calculation to b.
$$\alpha_{MgOH+} = \frac{1}{\frac{[H^+]}{*K_1} + 1} = \frac{0.00004}{*K_2}$$

Exercise 4: Hydrolysis of iron

Construct a distribution diagram for iron species as a function of pH. Follow the guidelines for constructing distribution diagrams (note that we are considering all hydrolysis species here). Use the following constants for your calculations and a total Fe(III) concentration of 10⁻⁹ M.

$$\log *K_1 = -3.05$$

$$\log {}^*\beta_2 = -6.31$$

$$\log *\beta_3 = -13.8$$

$$\log *\beta_4 = -22.7$$

$$Fe^{3+} \xrightarrow{K_1} FeOH^{2+} \xrightarrow{K_2} Fe(OH)_2^+ \xrightarrow{K_3} Fe(OH)_3^0 \xrightarrow{K_4} Fe(OH)_4^-$$

$$- \beta_2 \xrightarrow{\beta_3} \xrightarrow{\beta_4} \xrightarrow{\beta_4}$$

Exercise 4: Solution

- 1. Identify species present at equilibrium Fe^{3+} , $FeOH^{2+}$, $Fe(OH)_2^+$, $Fe(OH)_3$, $Fe(OH)_4^-$
- 2. Write our equilibrium equations and list complexation constants

Fe³⁺ + H₂O
$$\rightleftharpoons$$
 FeOH²⁺ + H⁺
*K₁
FeOH²⁺ + H₂O \rightleftharpoons Fe(OH)₂⁺ + H⁺
*K₂
Fe(OH)₂⁺ + H₂O \rightleftharpoons Fe(OH)₃ + H⁺
*K₃
Fe(OH)₃ + H₂O \rightleftharpoons Fe(OH)₄⁻ + H⁺

3. List mass balance equations

$$[Fe(III)]_T = [Fe^{3+}] + [FeOH^{2+}] + [Fe(OH)_2^+] + [Fe(OH)_3] + [Fe(OH)_4^-]$$

Exercise 4: Solution

 Insert 2. into 3 to express [Fe(III)]_T as a function of [Fe³⁺] and formation constants

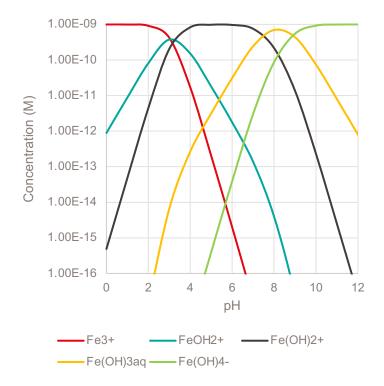
$$\begin{split} &[Fe(III)]_T = 10^{-9} = [Fe^{3+}] \ (1 + \frac{*K_1}{[H^+]} + \frac{*K_1*K_2}{[H^+]^2} + \frac{*K_1*K_2*K_3}{[H^+]^3} + \frac{*K_1*K_2*K_3*K_4}{[H^+]^4}) \\ &= [Fe^{3+}] \ (1 + \frac{*K_1}{[H^+]} + \frac{*\beta_2}{[H^+]^2} + \frac{*\beta_3}{[H^+]^3} + \frac{*\beta_4}{[H^+]^4}) \end{split}$$

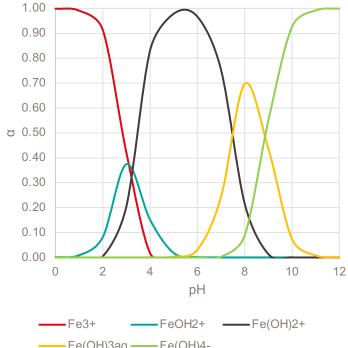
5. Solve 4. for Cu³⁺

$$[Fe^{3+}] = [Fe(III)]_T / (1 + \frac{*K_1}{[H^+]} + \frac{*\beta_2}{[H^+]^2} + \frac{*\beta_3}{[H^+]^3} + \frac{*\beta_4}{[H^+]^4})$$

6. Use the results of 5. to calculate the concentrations of hydroxo complexes using 2.

*
$$K_1 = \frac{[Fe(OH)^+][H^+]}{[Fe^{3+}]}$$
, thus $[Fe(OH)^+] = K_1 \frac{[Fe^{3+}]}{[H^+]}$


Concentrations of other species can be calculated analogously using the eqs. in 2.


Meret Aeppli

Exercise 4: Solution

